Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Sci Rep ; 13(1): 8416, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20238068

ABSTRACT

The prevalence of seasonal human coronavirus (HCoV) infections in early childhood and adults has not been well analyzed in longitudinal serological studies. Here we analyzed the changes in HCoV (229E, HKU1, NL63, OC43, MERS, and SARS-CoV-2) spike-specific antibody levels in follow-up serum specimens of 140 children at the age of 1, 2, and 3 years, and of 113 healthcare workers vaccinated for Covid-19 with BNT162b2-vaccine. IgG antibody levels against six recombinant HCoV spike subunit 1 (S1) proteins were measured by enzyme immunoassay. We show that by the age of three years the cumulative seropositivity for seasonal HCoVs increased to 38-81% depending on virus type. BNT162b2 vaccinations increased anti-SARS-CoV-2 S1 antibodies, but no increase in seasonal coronavirus antibodies associated with vaccinations. In healthcare workers (HCWs), during a 1-year follow-up, diagnostic antibody rises were seen in 5, 4 and 14% of the cases against 229E, NL63 and OC43 viruses, respectively, correlating well with the circulating HCoVs. In 6% of the HCWs, a diagnostic antibody rise was seen against S1 of HKU1, however, these rises coincided with anti-OC43 S1 antibody rises. Rabbit and guinea pig immune sera against HCoV S1 proteins indicated immunological cross-reactivity within alpha-CoV (229E and NL63) and beta-CoV (HKU1 and OC43) genera.


Subject(s)
Blood Group Antigens , COVID-19 , Coronavirus 229E, Human , Adult , Child , Humans , Child, Preschool , Infant , Animals , Guinea Pigs , Rabbits , Reinfection , BNT162 Vaccine , Spike Glycoprotein, Coronavirus , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Health Personnel
2.
Dermatologie (Heidelb) ; 74(6): 430-439, 2023 Jun.
Article in German | MEDLINE | ID: covidwho-2320029

ABSTRACT

During the coronavirus pandemic, significantly more pets were probably bought and kept. This study focuses on whether more zoophilic dermatophytes have subsequently been isolated and which species predominate. In the 1­year period from March 2020 through February 2021, all zoophilic dermatophytes from all submissions to the Mölbis laboratory were recorded. Both the cultural and the molecular evidence of fungal detection from skin scrapings, hair roots, and, in single cases, from nails, were considered. For dermatophyte DNA (Deoxyribonucleic acid) detection, an in-house polymerase chain reaction (PCR) - enzyme-linked immunosorbent assay (ELISA) was used. In distinct cases, identification of dermatophytes was confirmed by sequencing of the internal transcribed spacer (ITS) region of the rDNA, and of the gene of the translation elongation factor (TEF)-1α. In 579 (2.56%) of 22,575 samples studied in the year 2020/2021, zoophilic dermatophytes were detectable with PCR-ELISA and/or by cultivation. In comparison, the proportion of zoophilic dermatophytes was 2.03% in the 1­year period 2014/2015, and only 1.6% in 2018/2019. The 579 zoophilic dermatophytes were identified as follows: Trichophyton (T.) benhamiae 186 (32.1%), T. mentagrophytes 173 (29.9%), T. quinckeanum 110 (19.0%), Microsporum (M.) canis 78 (13.5%), T. verrucosum 22 (3.8%), Nannizzia (N.) persicolor 8 (1.4%), T. erinacei 1 (0.2%), and T. equinum 1 (0.2%). T. benhamiae had the highest prevalence from June to September 2020, then again in December. T. quinckeanum is associated with a sharp increase in the mice population in Germany in 2020; a significant increase was found in the months September 2020 to January 2021. T. mentagrophytes had a conspicuous peak in September. Compered with that M. canis in November. Up to 50% of the dermatophytoses caused by T. mentagrophytes, T. quinckeanum, and M. canis affected children and adolescents, while in the case of T. benhamiae it was as much as two thirds. Tinea corporis was the most common, followed by tinea faciei and tinea capitis. M. canis infections affected the capillitium more frequently than the face. Zoophilic dermatophytes were increasingly isolated during the coronavirus pandemic in Germany when compared to previous year periods. In first place, the dermatophyte T. benhamiae from guinea pigs was found in children and adolescents. A significant proportion of dermatophytoses concerned adults. T. quinckeanum is an emerging pathogen in Germany with unprecedented high infection rates in 2020.


Subject(s)
Arthrodermataceae , Canidae , Coronavirus Infections , Coronavirus , Dermatomycoses , Tinea , Animals , Guinea Pigs , Mice , Dermatomycoses/epidemiology , Pandemics , Tinea/diagnosis , Coronavirus Infections/epidemiology , Germany/epidemiology
3.
Influenza Other Respir Viruses ; 17(2): e13093, 2023 02.
Article in English | MEDLINE | ID: covidwho-2266808

ABSTRACT

Background: The antigenicity of SARS-CoV-2 is a critical issue for the effectiveness of the vaccine, and thus, it should be phenotypically evaluated by serological assays as new field isolates emerge. The hemagglutination/hemagglutination inhibition (HA/HI) tests are well known as a representative method for antigenic analysis of influenza viruses, but SARS-CoV-2 does not agglutinate human or guinea pig red blood cells. Therefore, the antigenic analysis requires complicated cell-based assays using special equipment such as plate reader or ELISPOT analyzer. Methods: Based on the HA/HI tests for influenza viruses, we developed the particle agglutination/particle agglutination inhibition (PA/PAI) test to easily and rapidly quantify the virus and antibody using human angiotensin-converting enzyme 2 (hACE2)-bound latex beads. The virus titers were determined by mixing the beads and the virus from culture supernatant, settling it overnight, and then observing the sedimentation/agglutination pattern (PA test). The neutralization antibody titers were determined by mixing virus-infected hamster antisera in addition to the beads and virus (PAI test). Results: The PA titer was positively correlated with the plaque-forming units. The PAI titer using the hamster antisera clearly revealed the antigenic difference between the omicron and previous variants. The antigenic differences were supported by the results shown in other methods. Conclusions: The PAI test is an easy and rapid method to analyze the antigenicity of SARS-CoV-2.


Subject(s)
COVID-19 , Orthomyxoviridae , Animals , Humans , Guinea Pigs , SARS-CoV-2 , Hemagglutination Inhibition Tests , Agglutination , Immune Sera , Hemagglutinin Glycoproteins, Influenza Virus
4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2271106

ABSTRACT

Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.


Subject(s)
COVID-19 , Cannabidiol , Cannabis , United States , Humans , Mice , Rats , Animals , Guinea Pigs , Cannabidiol/pharmacology , Clinical Relevance , SARS-CoV-2 , Inflammation/drug therapy , Immunity, Innate
5.
Health Educ Behav ; 48(6): 747-757, 2021 12.
Article in English | MEDLINE | ID: covidwho-1443746

ABSTRACT

OBJECTIVES: Latinos are disproportionately vulnerable to severe COVID-19 due to workplace exposure, multigenerational households, and existing health disparities. Rolling out COVID-19 vaccines among vulnerable Latinos is critical to address disparities. This study explores vaccine perceptions of Latino families to inform culturally centered strategies for vaccine dissemination. METHOD: Semistructured telephone interviews with Latino families (22 mothers and 24 youth, 13-18 years old) explored COVID-19 vaccine perceptions including (1) sources of information, (2) trust of vaccine effectiveness and willingness to get vaccinated, and (3) access to the vaccine distribution. We identified thematic patterns using immersion-crystallization. RESULTS: We found that (1) 41% expressed optimism and willingness to receive the vaccine coupled with concerns about side effects; (2) 45% expressed hesitancy or would refuse vaccination based on mistrust, myths, fear of being used as "guinea pigs," and the perceived role of politics in vaccine development; (3) families "digested" information gathered from social media, the news, and radio through intergenerational communication; and (4) participants called for community-led advocacy and "leading by example" to dispel fear and misinformation. Optimistic participants saw the vaccine as a way to protect their families, allowing youth to return to schools and providing safer conditions for frontline essential workers. CONCLUSIONS: Culturally centered vaccine promotion campaigns may consider the Latino family unit as their target audience by providing information that can be discussed among parents and youth, engaging a range of health providers and advocates that includes traditional practitioners and community health workers, and disseminating information at key venues, such as schools, churches, and supermarkets.


Subject(s)
COVID-19 , Vaccines , Adolescent , Animals , COVID-19 Vaccines , Guinea Pigs , Hispanic or Latino , Humans , Oregon , SARS-CoV-2 , Vaccination
6.
Schweiz Arch Tierheilkd ; 165(1): 59-63, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2204330

ABSTRACT

INTRODUCTION: In a guinea pig herd with 26 breeding animals, several individuals of all age categories died (16/26) after three animals had been newly introduced from another herd. Furthermore, the population suffered of apathy, anorexia, severe weight loss and conjunctivitis, as well as abortions and stillbirths. At the same time, the owner experienced a SARS-CoV-2 infection with pneumonia, which was confirmed by taking a PCR test. Chlamydia caviae was detected from the conjunctiva and vagina/uterus in one juvenile animal together with an intestinal Cryptosporidium wrairi infection. Oocysts were found histologically in the small intestine, which was confirmed by PCR. C. wairi is a parasite adapted to guinea pigs with zoonotic potential, which causes diarrhoea with frequent deaths in larger guinea pig herds. C. caviae is also a zoonotic pathogen and often the cause of conjunctivitis, pneumonia and abortions in guinea pigs and can lead to upper respiratory tract disease, conjunctivitis but also severe pneumonia in humans. The increased death cases and the clinical signs could be traced back to an infection with Cryptosporidium wrairi, complicated by a co-infection of C. caviae. We suspect that the abortions were caused by C. caviae, but since the population was treated with various antibiotics effective against chlamydial infections, it was no longer possible to verify this by PCR testing. Unfortunately, more animals succumbed and finally only two animals of the originally 26 were left. With this case report, we would like to point out to veterinarians that guinea pigs can be an important source of zoonotic infections for various pathogens, especially since they are popular pets and often come into close contact with children where hygiene might not always be strictly followed.


INTRODUCTION: Dans un groupe de cobayes de 26 animaux reproducteurs, plusieurs individus de toutes les catégories d'âge sont morts (16/26) après l'introduction de trois animaux provenant d'un autre groupe. En outre, la population a souffert d'apathie, d'anorexie, de perte de poids sévère et de conjonctivite ainsi que d'avortements et de mortinatalité. La présence de Chlamydia caviae a pu être détectée dans la conjonctive et le vagin/utérus d'un animal juvénile, ainsi qu'une infection intestinale à Cryptosporidium wrairi. Des oocystes ont été trouvés histologiquement dans l'intestin grêle, ce qui a été confirmé par PCR. C. wairi est un parasite adapté aux cobayes avec un potentiel zoonotique, qui provoque des diarrhées avec des morts fréquentes dans les grands groupes de cobayes. C. caviae est également un agent pathogène zoonotique et est souvent à l'origine de conjonctivites, de pneumonies et d'avortements chez les cobayes ; il peut entraîner des maladies des voies respiratoires supérieures, des conjonctivites mais aussi des pneumonies graves chez l'homme. L'augmentation des cas de décès et les signes cliniques pourraient être attribués à une infection par Cryptosporidium wrairi, compliquée par une co-infection par C. caviae. Nous soupçonnons que les avortements ont été causés par C. caviae, mais comme la population a été traitée avec divers antibiotiques efficaces contre les infections à chlamydia, il n'était plus possible de le vérifier par des tests PCR. Malheureusement, d'autres animaux ont succombé et il ne restait finalement que deux animaux sur les 26 d'origine. Avec ce rapport de cas, nous aimerions attirer l'attention des vétérinaires sur le fait que les cochons d'Inde peuvent être une source importante d'infections zoonotiques pour divers pathogènes, d'autant plus qu'il s'agit d'animaux de compagnie populaires qui sont souvent en contact étroit avec des enfants avec lesquels l'hygiène n'est pas toujours strictement respectée.


Subject(s)
Chlamydia Infections , Conjunctivitis , Cryptosporidiosis , Guinea Pigs , Animals , Female , Humans , Conjunctivitis/epidemiology , Conjunctivitis/microbiology , Conjunctivitis/parasitology , Conjunctivitis/veterinary , Cryptosporidiosis/epidemiology , Cryptosporidium , Disease Outbreaks/veterinary , Chlamydia Infections/complications , Chlamydia Infections/epidemiology , Chlamydia Infections/veterinary , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/parasitology
7.
J Cardiovasc Pharmacol ; 80(4): 616-622, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2051608

ABSTRACT

ABSTRACT: Bradycardia and QTc interval prolongation on the ECG have been reported with remdesivir (Veklury), an antiviral drug recently approved for treating severely ill patients with COVID-19. The objective was to evaluate the effects of remdesivir on cardiac electrophysiology ex vivo and in vivo. Ex vivo: Langendorff retroperfusion experiments were performed on isolated hearts from male Hartley guinea pigs (n = 23, total) exposed to either remdesivir 3, 10, or 30 µmol/L to assess drug-induced prolongation of the monophasic action potential duration measured at 90% repolarization (MAPD 90 ). In vivo: ECG recordings using wireless cardiac telemetry were performed in guinea pigs (n = 6) treated with daily i.p. doses of remdesivir 5 mg/kg on day 1 and 2.5 mg/kg on days 2-10. Ex vivo remdesivir (3, 10, and 30 µmol/L) had no statistically significant effect on MAPD 90 , while pacing the hearts at basic stimulation cycle lengths of 200 or 250 milliseconds, or when the hearts were not paced and beating at their intrinsic heart rate. In a second set of similar ex vivo experiments, remdesivir 10 µmol/L did not potentiate the MAPD 90 -prolonging effects of dofetilide 20 nmol/L (n = 4) hearts. In vivo remdesivir caused small but statistically significant prolongations of the RR and QTc F intervals at day 1 (5 mg/kg) and at day 10 (2.5 mg/kg). No ventricular arrhythmias were ever observed under the effect of remdesivir. Remdesivir causes bradycardia, and mild QTc prolongation, which nonetheless, could be of clinical relevance in many hospitalized patients with COVID-19 concomitantly treated with multiple drugs.


Subject(s)
COVID-19 Drug Treatment , Long QT Syndrome , Action Potentials , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/adverse effects , Bradycardia/chemically induced , Electrocardiography , Guinea Pigs , Long QT Syndrome/chemically induced , Male
8.
mSphere ; 7(5): e0092721, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2019747

ABSTRACT

Current influenza virus vaccines and antivirals have limitations, some of which disproportionately affect their utilization against influenza B viruses. To inform ongoing efforts to address the considerable global burden of influenza B viruses, we previously described five murine monoclonal antibodies that broadly bind conserved epitopes on the neuraminidase of influenza B viruses and protect against lethal challenge in a mouse model when delivered via intraperitoneal injection. Here, we validate the continued relevance of these antibodies by demonstrating that their protective effects extend to lethal challenge with mouse-adapted influenza B viruses recently isolated from humans. We also found that humanization of murine antibodies 1F2 and 4F11 resulted in molecules that retain the ability to protect mice from lethal challenge when administered prophylactically. Intranasal administration as an alternative route of 1F2 delivery revealed no differences in the mouse challenge model compared to intraperitoneal injection, supporting further assessment of this more targeted and convenient administration method. Lastly, we evaluated the potential for intranasal 1F2 administration initiated 1 day after infection to prevent transmission of an influenza B virus between cocaged guinea pigs. Here, we observed a 40% rate of transmission with the 1F2 antibody administered to the infected donor compared to 100% transmission with administration of an irrelevant control antibody. These data suggest that intranasal administration could be a viable route of administration for antibody therapeutics. Collectively, these findings demonstrate the potential of broad antineuraminidase antibodies as therapeutics to prevent and treat infections caused by influenza B viruses. IMPORTANCE The global health burden of influenza B viruses, especially in children, has long been underappreciated. Although two antigenically distinct influenza B virus lineages cocirculated before the coronavirus disease 2019 (COVID-19) pandemic, the commonly used trivalent seasonal vaccines contain antigens from only one influenza B virus, providing limited cross-protection against viruses of the other lineage. Additionally, studies have called into question the clinical effectiveness of the neuraminidase inhibitors that comprise the majority of available antivirals in treating influenza B virus infections. We previously described antibodies that bind broadly to neuraminidases of influenza B viruses across decades of antigenic evolution and potently protect mice against lethal challenge. Here we appraise additional factors to develop these antineuraminidase antibodies as antivirals to prevent and treat infections caused by an extensive range of influenza B viruses. In addition this work assesses recent clinical isolates belonging to the two influenza B virus lineages, finding evidence supporting the development of these antibodies for prophylactic and therapeutic use.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Animals , Guinea Pigs , Humans , Mice , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , Antiviral Agents , Disease Models, Animal , Epitopes , Influenza B virus , Neuraminidase
9.
Front Immunol ; 13: 836745, 2022.
Article in English | MEDLINE | ID: covidwho-1963439

ABSTRACT

Several vaccine candidates for COVID-19 have been developed, and few vaccines received emergency approval with an acceptable level of efficacy and safety. We herein report the development of the first recombinant protein-based vaccine in Iran based on the recombinant SARS-CoV-2 spike protein in its monomeric (encompassing amino acid 1-674 for S1 and 685-1211 for S2 subunits) and trimer form (S-Trimer) formulated in the oil-in-water adjuvant system RAS-01 (Razi Adjuvant System-01). The safety and immunity of the candidate vaccine, referred to as RAZI-COV PARS, were evaluated in Syrian hamster, BALB/c mice, Pirbright guinea pig, and New Zeeland white (NZW) rabbit. All vaccinated animals received two intramuscular (IM) and one intranasal (IN) candidate vaccine at 3-week intervals (days 0, 21, and 51). The challenge study was performed intranasally with 5×106 pfu of SARS-CoV-2 35 days post-vaccination. None of the vaccinated mice, hamsters, guinea pigs, or rabbits showed any changes in general clinical observations; body weight and food intake, clinical indicators, hematology examination, blood chemistry, and pathological examination of vital organs. Safety of vaccine after the administration of single and repeated dose was also established. Three different doses of candidate vaccine stimulated remarkable titers of neutralizing antibodies, S1, Receptor-Binding Domain (RBD), and N-terminal domain (NTD) specific IgG antibodies as well as IgA antibodies compared to placebo and control groups (P<0.01). Middle and high doses of RAZI-COV PARS vaccine significantly induced a robust and quick immune response from the third-week post-immunization. Histopathological studies on vaccinated hamsters showed that the challenge with SARS-CoV-2 did not induce any modifications in the lungs. The protection of the hamster was documented by the absence of lung pathology, the decreased virus load in the lung, rapid clearance of the virus from the lung, and strong humoral and cellular immune response. These findings confirm the immunogenicity and efficacy of the RAZI-COV PARS vaccine. Of the three tested vaccine regimens, the middle dose of the vaccine showed the best protective immune parameters. This vaccine with heterologous prime-boost vaccination method can be a good candidate to control the viral infection and its spread by stimulating central and mucosal immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cricetinae , Guinea Pigs , Humans , Mice , Models, Animal , Rabbits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Combined , Vaccines, Synthetic
10.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960334

ABSTRACT

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral/genetics , COVID-19/genetics , Cluster Analysis , Guinea Pigs , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
11.
ILAR J ; 62(1-2): 77-132, 2021 12 31.
Article in English | MEDLINE | ID: covidwho-1956567

ABSTRACT

Animals are valuable resources in biomedical research in investigations of biological processes, disease pathogenesis, therapeutic interventions, safety, toxicity, and carcinogenicity. Interpretation of data from animals requires knowledge not only of the processes or diseases (pathophysiology) under study but also recognition of spontaneous conditions and background lesions (pathology) that can influence or confound the study results. Species, strain/stock, sex, age, anatomy, physiology, spontaneous diseases (noninfectious and infectious), and neoplasia impact experimental results and interpretation as well as animal welfare. This review and the references selected aim to provide a pathology resource for researchers, pathologists, and veterinary personnel who strive to achieve research rigor and validity and must understand the spectrum of "normal" and expected conditions to accurately identify research-relevant experimental phenotypes as well as unusual illness, pathology, or other conditions that can compromise studies involving laboratory mice, rats, gerbils, guinea pigs, hamsters, naked mole rats, and rabbits.


Subject(s)
Biological Phenomena , Communicable Diseases , Animals , Cricetinae , Gerbillinae , Guinea Pigs , Mice , Mole Rats , Rabbits
12.
Front Cell Infect Microbiol ; 12: 897416, 2022.
Article in English | MEDLINE | ID: covidwho-1847157

ABSTRACT

The pandemic of respiratory diseases, such as coronavirus disease 2019 (COVID-19) and influenza, has imposed significant public health and economic burdens on the world. Wearing masks is an effective way to cut off the spread of the respiratory virus. However, due to cultural differences and uncomfortable wearing experiences, not everyone is willing to wear masks; there is an urgent need to find alternatives to masks. In this study, we tested the disinfection effect of a portable ionizer on pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (strain V34) and influenza A virus (strain CA04). Negative ions significantly reduced the concentration of particulate matter in the air above and effectively disinfected viruses stuck to the solid plate at the level of both nucleic acid and virus titer. The disinfection efficiency was >99.8% after 1-h exposure. Moreover, negative ions effectively disinfected aerosolized viruses; the disinfection efficiency was more than 87.77% after purification for 10 min. Furthermore, negative ions had a significant protective effect on susceptible animals exposed to viral aerosols. When the negative ionizer was switched from off to on, the inhalation 50% infective dose (ID50) for golden hamsters challenged with SARS-CoV-2 rose from 9.878 median tissue culture infective dose (TCID50) [95% confidence interval (CI), 6.727-14.013 TCID50] to 43.891 TCID50 (95% CI, 29.31-76.983 TCID50), and the inhalation ID50 for guinea pigs challenged with influenza A virus rose from 6.696 TCID50 (95% CI, 3.251-9.601 TCID50) to 28.284 TCID50 (95% CI, 19.705-40.599 TCID50). In the experiment of transmission between susceptible animals, negative ions 100% inhibited the aerosol transmission of SARS-CoV-2 and influenza A virus. Finally, we tested the safety of negative ion exposure. Balb/c mice exposed to negative ions for 4 weeks showed no abnormalities in body weight, blood routine analysis, and lung pathology. Our study demonstrates that air ions can be used as a safe and effective means of blocking respiratory virus transmission and contribute to pandemic prevention and control.


Subject(s)
COVID-19 , Influenza A virus , Aerosols , Animals , COVID-19/prevention & control , Cricetinae , Guinea Pigs , Ions , Mice , Pandemics/prevention & control , SARS-CoV-2
13.
Drugs ; 82(5): 533-557, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1827389

ABSTRACT

Sulopenem (formerly known as CP-70,429, and CP-65,207 when a component of a racemic mixture with its R isomer) is an intravenous and oral penem that possesses in vitro activity against fluoroquinolone-resistant, extended spectrum ß-lactamases (ESBL)-producing, multidrug-resistant (MDR) Enterobacterales. Sulopenem is being developed to treat patients with uncomplicated and complicated urinary tract infections (UTIs) as well as intra-abdominal infections. This review will focus mainly on its use in UTIs. The chemical structure of sulopenem shares properties of penicillins, cephalosporins, and carbapenems. Sulopenem is available as an oral prodrug formulation, sulopenem etzadroxil, which is hydrolyzed by intestinal esterases, resulting in active sulopenem. In early studies, the S isomer of CP-65,207, later developed as sulopenem, demonstrated greater absorption, higher drug concentrations in the urine, and increased stability against the renal enzyme dehydropeptidase-1 compared with the R isomer, which set the stage for its further development as a UTI antimicrobial. Sulopenem is active against both Gram-negative and Gram-positive microorganisms. Sulopenem's ß-lactam ring alkylates the serine residues of penicillin-binding protein (PBP), which inhibits peptidoglycan cross-linking. Due to its ionization and low molecular weight, sulopenem passes through outer membrane proteins to reach PBPs of Gram-negative bacteria. While sulopenem activity is unaffected by many ß-lactamases, resistance arises from alterations in PBPs (e.g., methicillin-resistant Staphylococcus aureus [MRSA]), expression of carbapenemases (e.g., carbapenemase-producing Enterobacterales and in Stenotrophomonas maltophilia), reduction in the expression of outer membrane proteins (e.g., some Klebsiella spp.), and the presence of efflux pumps (e.g., MexAB-OprM in Pseudomonas aeruginosa), or a combination of these mechanisms. In vitro studies have reported that sulopenem demonstrates greater activity than meropenem and ertapenem against Enterococcus faecalis, Listeria monocytogenes, methicillin-susceptible S. aureus (MSSA), and Staphylococcus epidermidis, as well as similar activity to carbapenems against Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus pyogenes. With some exceptions, sulopenem activity against Gram-negative aerobes was less than ertapenem and meropenem but greater than imipenem. Sulopenem activity against Escherichia coli carrying ESBL, CTX-M, or Amp-C enzymes, or demonstrating MDR phenotypes, as well as against ESBL-producing Klebsiella pneumoniae, was nearly identical to ertapenem and meropenem and greater than imipenem. Sulopenem exhibited identical or slightly greater activity than imipenem against many Gram-positive and Gram-negative anaerobes, including Bacteroides fragilis. The pharmacokinetics of intravenous sulopenem appear similar to carbapenems such as imipenem-cilastatin, meropenem, and doripenem. In healthy subjects, reported volumes of distribution (Vd) ranged from 15.8 to 27.6 L, total drug clearances (CLT) of 18.9-24.9 L/h, protein binding of approximately 10%, and elimination half-lives (t½) of 0.88-1.03 h. The estimated renal clearance (CLR) of sulopenem is 8.0-10.6 L/h, with 35.5% ± 6.7% of a 1000 mg dose recovered unchanged in the urine. An ester prodrug, sulopenem etzadroxil, has been developed for oral administration. Initial investigations reported a variable oral bioavailability of 20-34% under fasted conditions, however subsequent work showed that bioavailability is significantly improved by administering sulopenem with food to increase its oral absorption or with probenecid to reduce its renal tubular secretion. Food consumption increases the area under the curve (AUC) of oral sulopenem (500 mg twice daily) by 23.6% when administered alone and 62% when administered with 500 mg of probenecid. Like carbapenems, sulopenem demonstrates bactericidal activity that is associated with the percentage of time that free concentrations exceed the MIC (%f T > MIC). In animal models, bacteriostasis was associated with %f T > MICs ranging from 8.6 to 17%, whereas 2-log10 kill was seen at values ranging from 12 to 28%. No pharmacodynamic targets have been documented for suppression of resistance. Sulopenem concentrations in urine are variable, ranging from 21.8 to 420.0 mg/L (median 84.4 mg/L) in fasted subjects and 28.8 to 609.0 mg/L (median 87.3 mg/L) in those who were fed. Sulopenem has been compared with carbapenems and cephalosporins in guinea pig and murine systemic and lung infection animal models. Studied pathogens included Acinetobacter calcoaceticus, B. fragilis, Citrobacter freundii, Enterobacter cloacae, E. coli, K. pneumoniae, Proteus vulgaris, and Serratia marcescens. These studies reported that overall, sulopenem was non-inferior to carbapenems but appeared to be superior to cephalosporins. A phase III clinical trial (SURE-1) reported that sulopenem was not non-inferior to ciprofloxacin in women infected with fluoroquinolone-susceptible pathogens, due to a higher rate of asymptomatic bacteriuria in sulopenem-treated patients at the test-of-cure visit. However, the researchers reported superiority of sulopenem etzadroxil/probenecid over ciprofloxacin for the treatment of uncomplicated UTIs in women infected with fluoroquinolone/non-susceptible pathogens, and non-inferiority in all patients with a positive urine culture. A phase III clinical trial (SURE-2) compared intravenous sulopenem followed by oral sulopenem etzadroxil/probenecid with ertapenem in the treatment of complicated UTIs. No difference in overall success was noted at the end of therapy. However, intravenous sulopenem followed by oral sulopenem etzadroxil was not non-inferior to ertapenem followed by oral stepdown therapy in overall success at test-of-cure due to a higher rate of asymptomatic bacteriuria in the sulopenem arm. After a meeting with the US FDA, Iterum stated that they are currently evaluating the optimal design for an additional phase III uncomplicated UTI study to be conducted prior to the potential resubmission of the New Drug Application (NDA). It is unclear at this time whether Iterum intends to apply for EMA or Japanese regulatory approval. The safety and tolerability of sulopenem has been reported in various phase I pharmacokinetic studies and phase III clinical trials. Sulopenem (intravenous and oral) appears to be well tolerated in healthy subjects, with and without the coadministration of probenecid, with few serious drug-related treatment-emergent adverse events (TEAEs) reported to date. Reported TEAEs affecting ≥1% of patients were (from most to least common) diarrhea, nausea, headache, vomiting and dizziness. Discontinuation rates were low and were not different than comparator agents. Sulopenem administered orally and/or intravenously represents a potentially well tolerated and effective option for treating uncomplicated and complicated UTIs, especially in patients with documented or highly suspected antimicrobial pathogens to commonly used agents (e.g. fluoroquinolone-resistant E. coli), and in patients with documented microbiological or clinical failure or patients who demonstrate intolerance/adverse effects to first-line agents. This agent will likely be used orally in the outpatient setting, and intravenously followed by oral stepdown in the hospital setting. Sulopenem also allows for oral stepdown therapy in the hospital setting from intravenous non-sulopenem therapy. More clinical data are required to fully assess the clinical efficacy and safety of sulopenem, especially in patients with complicated UTIs caused by resistant pathogens such as ESBL-producing, Amp-C, MDR E. coli. Antimicrobial stewardship programs will need to create guidelines for when this oral and intravenous penem should be used.


Subject(s)
Bacteriuria , Methicillin-Resistant Staphylococcus aureus , Prodrugs , Urinary Tract Infections , Adenosine Monophosphate/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriuria/chemically induced , Bacteriuria/drug therapy , Carbapenems/pharmacology , Cephalosporins/pharmacology , Ciprofloxacin/pharmacology , Ertapenem , Escherichia coli , Female , Fluoroquinolones/pharmacology , Gram-Negative Bacteria , Guinea Pigs , Humans , Imipenem/pharmacology , Lactams , Male , Membrane Proteins/pharmacology , Meropenem/pharmacology , Mice , Probenecid/pharmacology , Prodrugs/pharmacology , Staphylococcus aureus , Urinary Tract Infections/drug therapy , beta-Lactamases/pharmacology
14.
Immunopharmacol Immunotoxicol ; 44(5): 633-640, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1819682

ABSTRACT

Background: The safety of novel vaccines against COVID-19 is currently a major focus of preclinical research. As a part of the safety evaluation testing package, 24 healthy guinea pigs were used to determine whether repeated administration of inactivated SARS-CoV-2 vaccine could induce active systemic anaphylaxis (ASA), and to evaluate its degree of severity.Method: According to sex and body weight, the animals were randomly divided into three experimental groups (eight animals per group). The negative control group received 0.9% sodium chloride (priming dose: 0.5 mL/animal; challenge dose: 1 mL/animal); the positive control group received 10% ovalbumin (priming dose: 0.5 mL/animal; challenge dose: 1 mL/animal); and the inactivated SARS-CoV-2 vaccine group received inactivated SARS-CoV-2 vaccines (priming dose: 100 U in 0.5 mL/animal; challenge dose: 200 U in 1 mL/animal). Priming dose administration was conducted by multi-point injection into the muscles of the hind limbs, three times, once every other day. On days 14 and 21 after the final priming injection, a challenge test was conducted. Half of the animals in each group were injected intravenously with twice the dose and volume of the tested substance used for immunization. During the experimental course, the injection site, general clinical symptoms, body weight, and systemic allergic reaction symptoms were monitored.Result: After intramuscular injection of inactivated SARS-CoV-2 vaccine, there were no abnormal reactions at the injection site, clinical symptoms, or deaths. There was no difference in body weight between the groups, and there were no allergic reactions. Conclusion: Thus, inactivated SARS-CoV-2 vaccine injected intramuscularly in guinea pigs did not produce ASA and had a good safety profile, which can provide actual data on vaccine risks and important reference data for clinical research on this vaccine.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Anaphylaxis/epidemiology , Animals , Antibodies, Viral , Body Weight , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Chlorocebus aethiops , Female , Guinea Pigs , Injections, Intramuscular , Male , Ovalbumin , SARS-CoV-2 , Sodium Chloride , Vero Cells
15.
BMC Vet Res ; 18(1): 93, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1770540

ABSTRACT

BACKGROUND: Mycobacteria are found in many environmental conditions and infect a variety of species, including rodents and rabbits. Guinea pigs are used experimentally as a model for Mycobacterium tuberculosis, but natural mycobacteriosis in guinea pigs has not been reported. CASE PRESENTATION: A 1.5-year-old female guinea pig was found acutely deceased with no premonitory illness. On gross post-mortem examination, multifocal to coalescing, raised, firm, pale tan nodules with discrete, irregular margins were noted over the surfaces of all lung lobes. Histopathology revealed nodules composed of clustered foamy macrophages and multinucleated giant cells containing numerous bacterial rods. Similar bacteria-laden macrophages were noted within sections of the liver, heart, palpebral conjunctiva, duodenum, and cecum. Polymerase chain reaction was performed on tissues collected during post-mortem examination. The 16S rRNA gene product was sequenced and was identical to the Mycobacterium genavense type strain. CONCLUSIONS: To the best of the author's knowledge, this report details the first documented case of Mycobacterium genvaense infection in a guinea pig and a follow up investigation of close-contact animals. Given their experimental susceptibility and this clinical case report, mycobacteriosis should be considered as a differential in guinea pigs exhibiting weight loss in the absence of other clinical signs. With the potential for zoonotic transmission in immunosuppressed individuals, precautions should be taken to safeguard human health in cases of guinea pigs with suspected M. genavense infection.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium , Animals , Female , Guinea Pigs , Mycobacterium Infections, Nontuberculous/veterinary , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 16S/genetics , Rabbits
16.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , Nucleic Acid-Based Vaccines/administration & dosage , Nucleic Acid-Based Vaccines/chemistry , Nucleic Acid-Based Vaccines/genetics , Nucleic Acid-Based Vaccines/immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
17.
Sci Rep ; 12(1): 1075, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1642005

ABSTRACT

Inflammatory diseases including COVID-19 are associated with a cytokine storm characterized by high interleukin-6 (IL-6) titers. In particular, while recent studies examined COVID-19 associated arrhythmic risks from cardiac injury and/or from pharmacotherapy such as the combination of azithromycin (AZM) and hydroxychloroquine (HCQ), the role of IL-6 per se in increasing the arrhythmic risk remains poorly understood. The objective is to elucidate the electrophysiological basis of inflammation-associated arrhythmic risk in the presence of AZM and HCQ. IL-6, AZM and HCQ were concomitantly administered to guinea pigs in-vivo and in-vitro. Electrocardiograms, action potentials and ion-currents were analyzed. IL-6 alone or the combination AZM + HCQ induced mild to moderate reduction in heart rate, PR-interval and corrected QT (QTc) in-vivo and in-vitro. Notably, IL-6 alone was more potent than the combination of the two drugs in reducing heart rate, increasing PR-interval and QTc. In addition, the in-vivo or in-vitro combination of IL-6 + AZM + HCQ caused severe bradycardia, conduction abnormalities, QTc prolongation and asystole. These electrocardiographic abnormalities were attenuated in-vivo by tocilizumab (TCZ), a monoclonal antibody against IL-6 receptor, and are due in part to the prolongation of action potential duration and selective inhibition of Na+, Ca2+ and K+ currents. Inflammation confers greater risk for arrhythmia than the drug combination therapy. As such, in the setting of elevated IL-6 during inflammation caution must be taken when co-administering drugs known to predispose to fatal arrhythmias and TCZ could be an important player as a novel anti-arrhythmic agent. Thus, identifying inflammation as a critical culprit is essential for proper management.


Subject(s)
Arrhythmias, Cardiac , Azithromycin/pharmacology , COVID-19 Drug Treatment , COVID-19 , Hydroxychloroquine/pharmacology , Interleukin-6/metabolism , SARS-CoV-2/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , COVID-19/complications , COVID-19/metabolism , COVID-19/physiopathology , Female , Guinea Pigs , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/physiopathology , Interleukin-6/antagonists & inhibitors , Male
18.
J Med Virol ; 94(5): 2108-2125, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627779

ABSTRACT

Variants of SARS-CoV-2 continue to emerge, posing great challenges in outbreak prevention and control. It is important to understand in advance the impact of possible variants of concern (VOCs) on infectivity and antigenicity. Here, we constructed one or more of the 15 high-frequency naturally occurring amino acid changes in the receptor-binding domain (RBD) of Alpha, Beta, and Gamma variants. A single mutant of A520S, V367F, and S494P in the above three VOCs enhanced infectivity in ACE2-overexpressing 293T cells of different species, LLC-MK2 and Vero cells. Aggregation of multiple RBD mutations significantly reduces the infectivity of the possible three VOCs. Regarding neutralization, it is noteworthy that E484K, N501Y, K417N, and N439K predispose to monoclonal antibodies (mAbs) protection failure in the 15 high-frequency mutations. Most importantly, almost all possible VOCs (single RBD mutation or aggregation of multiple mutations) showed no more than a fourfold decrease in neutralizing activity with convalescent sera, vaccine sera, and immune sera of guinea pigs with different immunogens, and no significant antigenic drift was formed. In conclusion, our pseudovirus results could reduce the concern that the aggregation of multiple high-frequency mutations in the RBD of the spike protein of the three VOCs would lead to severe antigenic drift, and this would provide value for vaccine development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antigenic Drift and Shift , COVID-19/therapy , Chlorocebus aethiops , Guinea Pigs , Humans , Immunization, Passive , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vero Cells , COVID-19 Serotherapy
19.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: covidwho-1571525

ABSTRACT

Nucleoside-modified mRNA vaccines have gained global attention because of COVID-19. We evaluated a similar vaccine approach for preventing a chronic, latent genital infection rather than an acute respiratory infection. We used animal models to compare an HSV-2 trivalent nucleoside-modified mRNA vaccine with the same antigens prepared as proteins, with an emphasis on antigen-specific memory B cell responses and immune correlates of protection. In guinea pigs, serum neutralizing-antibody titers were higher at 1 month and declined far less by 8 months in mRNA- compared with protein-immunized animals. Both vaccines protected against death and genital lesions when infected 1 month after immunization; however, protection was more durable in the mRNA group compared with the protein group when infected after 8 months, an interval representing greater than 15% of the animal's lifespan. Serum and vaginal neutralizing-antibody titers correlated with protection against infection, as measured by genital lesions and vaginal virus titers 2 days after infection. In mice, the mRNA vaccine generated more antigen-specific memory B cells than the protein vaccine at early times after immunization that persisted for up to 1 year. High neutralizing titers and robust B cell immune memory likely explain the more durable protection by the HSV-2 mRNA vaccine.


Subject(s)
Herpes Genitalis , Herpesvirus 2, Human/immunology , Immunologic Memory , Memory B Cells/immunology , RNA, Viral/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , Disease Models, Animal , Female , Guinea Pigs , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , SARS-CoV-2/immunology
20.
Aust N Z J Public Health ; 46(1): 16-24, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1570283

ABSTRACT

OBJECTIVE: Tailored communication is necessary to address COVID-19 vaccine hesitancy and increase uptake. We aimed to understand the information needs, perceived benefits and barriers to COVID-19 vaccination of people prioritised, but hesitant to receive the vaccine. METHOD: In this qualitative study in Victoria, Australia (February-May 2021), we purposively sampled hesitant adults who were health or aged/disability care workers (n=20), or adults aged 18-69 with comorbidities or aged ≥70 years ('prioritised adults'; n=19). We thematically analysed interviews inductively, then deductively organised themes within the World Health Organization Behavioural and Social Drivers of vaccination model. Two stakeholder workshops (n=12) explored understanding and preferences for communicating risks and benefits. We subsequently formed communication recommendations. RESULTS: Prioritised adults and health and aged care workers had short- and long-term safety concerns specific to personal circumstances, and felt like "guinea pigs". They saw vaccination as beneficial for individual and community protection and travel. Some health and aged care workers felt insufficiently informed to recommend vaccines, or viewed this as outside their scope of practice. Workshop participants requested interactive materials and transparency from spokespeople about uncertainty. Conclusions and public health implications: Eleven recommendations address communication content, delivery and context to increase uptake and acceptance of COVID-19 vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , COVID-19 Vaccines , Guinea Pigs , Humans , Intention , SARS-CoV-2 , Vaccination , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL